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Abstract. We consider a directed sandpile automaton on the Bethe lattice and show that 
the system evolves ergodically to every configuration with equal probability, irrespective 
of the initial state. We make it clear that the system is driven into the self-organized critical 
State which is in equivalence to site percolation at the critical percolation threshold on the 
Bethe lattice. 

Recently the concept of self-organized criticality (soc) proposed by Bak, Tang and 
Wiesenfeld (BTW) [1,2] has aroused much interest. The principal conclusion of BTW 

is that dissipative dynamical systems tend to organize themselves without fine-tuning 
into a critical state where chain reactions of all sizes in time and space propagate 
through the system. 

One of the simplest models that show soc is the cellular automaton model of 
sandpiles. Our knowledge about this model came first from the computer simulations 
of BTW [ l ,  21. More extensive and large-scale simulations were made later by Kadanoff 
et al[3] and Grassberger and Manna [4,5]. By the efforts of Dhar and his co-workers 
[6-81, it seems that it is possible to tackle the problem analytically. A directed version 
of the sandpile model has been successfully solved in [6]. Using some assumptions 
about the compactness of avalanche clusters, Zhang [9] has determined the critical 
exponents characterizing the SOC state in the undirected BTW model in all dimensions. 
Based on the analogy between the avalanche process and the branching self-avoiding 
walk and using the &-expansion technique, Obukhov [lo] has conjectured that the 
upper critical dimension for the undirected BTW model is d, = 4, while d ,  = 3 for the 
directed model of reference [6]. For dimensions above d,,  the mean-field values of 
the critical exponents are valid. It is found that these values are numerically identical 
with the mean-field values of percolation models. The relationship between the sandpile 
model and the percolation model has been noted previously in [4,8]. 

In this paper we devise a simple sandpile automaton which has the advantage of 
easy solvability and explicit demonstration of the equivalence of the soc state to the 
site percolation at the critical percolation threshold in this particular case. Our model 
is a directed sandpile automaton on the Bethe lattice. The toppling direction is the 
outgoing direction of the Bethe lattice. Here we consider one branch of the lattice (see 
figure 1). Each lattice site (including the boundary sites) has a coordination number 
of z = m + 1. The system consists of N sites and the toppling rule is height-dependent. 
For each site, a sand height hi is assigned ( 0 6  hi 6 m - 1) .  The dynamics is defined as 
follows: 
t Address to which all correspondence should be sent. 
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Figure 1. One branch of the Bethe lattice with coordination number P = m + 1 = 3. The 
arrows represent the toppling directions. 

(1) when the configuration is stable, a site i is chosen randomly and the sand 
height hi is increased by a unit, i.e. hj + hi + 1; 

(2) if at any site the sand height is greater than m - 1, its height decreases by m 
and sand particles drop along the preferred directions (toppling directions) to nearest 
neighbours (NN). As a result, the height of each of the NN sites in the preferred 
UIISL..IIUIID mcI=a>Ci> uy I .  racw gmim uiup UUL UL LIIC system [rum me  oounudry sires. 

We consider the dynamic process starting from a stable configuration. In the 
phase-space, a configuration is represented by a point, and all the stable configurations 
form an N-dimensional hypercubic lattice with total point number of mN. If Prob(P, f) 
denotes the probability of the system being found in point P in the phase-space at 
time f, then the initial state is characterized by: 

-I:-^^r:^-^:^^-^^^^^L__,  Q ^ _ A  ---:..- _I_^_ -... .'-.L. .... I._. P .._. .L. ~ . . - ~  

Prob(P, 0) = S,,, ( l a )  

where Po represents the initial configuration. 
There are N choices of adding a sand grain, with probability of I/ N for each, to 

a stable configuration (say, P i n  the phase-space), resulting in N new stable configur- 
ations (say, Q,,  Q2, .  . . , QN). Correspondingly, the probability Prob(P, I )  splits into 

cyma, pa,,> WLllL.,, C U L , L , I " " I ~  tu r,uv,yj, t T,,, I - I ,  L,. . . , I * .  LIlllCC LllG rupplrrrgs 
are directed and the dynamics is invertible, there are N (and only N )  configurations 
(say, 0,. 02,. . . , 0,) at time f - 1 which have the probability of resulting in the 
configuration P at time 1. Therefore, 

xr ~ -.." I ... L:-L ---. -L...- ... D - - L I ~  . ~ r \  :-, 1 h, e:-"- *I.̂ a..--,:--" 
1. 

I '. 
Proh(P,f)=- 1 Prob(Oi, f - I )  

N i=, 

Equation ( I b )  is the rule of a new automaton in the phase-space. After a sufficiently 
long time of applying such a rule, the quantity Proh(P, I )  will become stationary and 
uniformly distributed, irrespective of the initial condition ( l a )  (at this stage, the SOC 

state is reached): 

1 
m Proh(P, f ) = P r o h = ~  for f >> 1 

In the computer simulations, adding one sand grain to a stable configuration will result 
in a new Configuration, i.e. adding a particle will cause the system to transfer from 
one point to another in the phase-space. After a sufficiently long time of adding sand 
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grains, the system will be ergodic. Since the probability of the configurations (or 
ensembles) is uniformly distributed in the SOC state, we can accept that the time average 
of some quantity (e.g. avalanche size) is equal to its ensemble average. This puts us 
in a position that we can compare the results of computer simulations (time average) 
with analytical results (ensemble average). 

In order to clarify the relationship between the above sandpile model and the 
percolation model, it is useful to regard sites with hi = m - 1 as 'active' sites and others 
as 'inactive' sites. Site percolation only involves configuration whose elements are 
'occupied' and 'unoccupied', corresponding to 'active' and 'inactive' in the sandpile 
model. One can see that different configurations in the sandpile model may be the 
same configuration from the percolation's point of view. A configuration with s sites 
occupied and N-s sites unoccupied in the percolation model corresponds to ( m -  
l)N-s configurations in the above sandpile automaton. Therefore, for the sandpile 
model studied, the probability of the system being in a configuration with s 'active' 
and N - s 'inactive' sites is 

with 

(4) 
1 1  p =-=- 

E m 2 - 1 '  

The probability expressed by equation (3) has the same form as the probability of the 
configuration with s site occupied (with probability pJ and the rest unoccupied in the 

I"+:-- ...-A-, r 3 21 ~1.:- :-A:..-'..~ .L-. .L- -.-A,. --..L:I- -..4-_..1-X 
311Ci pc;rb"mnurr lllu"rl L',,. l ,,,a 'LI"I~'a_LGJ U I a L  L U G  D U L  JI'lLS U, U,= " a L L Y p L L c  auLuILLaLu, ,  

studied is identical to the critical state of the percolation model at threshold. Adding 
sand grains to the system only means ensemble-averaging in the critical state of the 
percolation model. The critical exponents characterizing the SOC state of the automaton 
should have the same values as those of the percolation in the Bethe lattice, i.e. the 
mean-field values of percolation models. 

In the following we would like to calculate the average sand height per site. If 
(j = 0,1,. . . , m - 1) denotes the probability that a site has height h, = j ,  then in the 

soc  state, the probability for a chosen site flipping from h, = 0 to h, = 1 should equal 
the probability of flipping from h, = 1 to h, = 2. The former is 

1 1 1 
N N m-' Pr(0 -* 1) = -fo+p-l +-f f f + . . . 

On the right-hand side of equation ( 5 ) ,  the first term accounts for the possibility 
of adding a sand grain just to the chosen site, and the other terms are due to the 
toppling of other sites which are the precedent sites of the chosen one (There are no 
such simple terms either in the undirected Brw models or in the directed version of [6].) 

Similarly, 

1 1 1 
PrO+ 2) = ~ f , + ~ f , f " - , + i j f ' ~ ~ - ~ f , - , + .  . . . (6) 

Setting equation ( 5 )  equal to equation (6) yields 

f o = f , .  (7) 
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In a similar manner we can obtain 

1 
m 

fo=f ,=f2=.  . .=fm-,=-. 

Then the average height is 

2 m - l  

( h ) =  i f = ( m - l ) / 2 = - - 1  
i =o  2 

where z is the coordination number of the Bethe lattice. So we have calculated the 
average height using equation (8) which is exact here and consistent with the ansatz 
for the energy distribution of [I41 in the large dimension limit [14, equations (4) and 
(11 ) l .  

Finally, note that the directedness in our sandpile automaton is outgoing and this is 
in accordance with the global flow of sand grains in the undirected BTW model; the 
result of directedness is no multi-toppling and we know from [4] that multi-topplings 
are rare and become negligible for large avalanche in undirected BTW models. 
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